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Laser-pump X-ray-probe studies of atomic inner-shell physics

! Scientific motivations

! First results at APS beamline 7ID

! Instrumentation and methods

! Future scientific directions

! Suggestions for advanced capabilities at the APS
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Predicted high-field modification of Kr x-ray absorption edge

Field-free

Kr 1s → 5p, 6p, ..., εp
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1.6 x 10 13 W/cm 2

Strong-field ionization
≈2 × 1014 W/cm2

Kr+ 1s → 4p, 5p, 6p, ..., εp 
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Photoionization and vacancy decay across threshold
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! Multi-step vacancy-decay pathways
! Bound and continuum intermediate states 
! Post-collision interactions
! Final-state sticking probabilities
! Unknown dressed-atom effects

G. B. Armen et al., Phys. Rev. A 67, 042718 (2003); 69, 062710 (2004)

x-ray absorption x-ray fluorescence

Auger-electron emission

5p, 6p, ..., εp
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Our first pump-probe experiment at APS beamline 7ID

High field (≈1014 W/cm2) of optical 
laser (1.55 eV) ionizes Kr 4p electron

X ray (14.3 keV) excites 1s electron 
to 4p hole
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Beamline 7ID laser system - June 2004

oscillator: 88 MHz, 1 nJ, 50 fs
amplifier:  1 kHz, 1 mJ, 50 fs

1.1 km APS storage ring
352 MHz RF, 1296 buckets

272 kHz, 3.68 µs

D. A. Reis, P. H. Bucksbaum, M. F. DeCamp, Rad. Phys. Chem. 70, 605 (2004)

laser-xray timing jitter ≈2 ps
focusing to ≈10 µm spot required 

for 1013�1014 W/cm2 regime



8

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

7ID x-ray beam path
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Focused laser and x-ray beams overlapped in space and time 
through atomic-gas target

laser

ion-imaging TOF 

electron TOF/
X-ray detector CCD camera

KB mirrors x-rays

Laser focusing
mirror

chopper

photodiode
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Kirkpatrick-Baez x-ray microfocus mirrors

20-cm-long 
mirrors

CCD camera 
views focal spots

target 
chamber

P.J. Eng, M. Newville, M. L. Rivers, S.R. Sutton, SPIE Vol. 3449, 145 (1998)

Courtesy of Peter Eng, GeoCARS, U. Chicago
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Viewing and overlapping focal spots

! Focus x rays to center of chamber
! Locate x-ray centroid with BGO
! Overlap focused laser

-rough: BGO crystal
-fine:  in-vacuum cross hairs
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Measuring overlap of focused laser and x-ray beams

Scan 10 µm cross-hair

X-rays: monitor current 
electrically isolated cross-hair

Laser: monitor scattered light 
pixel sum from a selected region 
on CCD camera
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APS ring fill pattern with isolated bucket
Single bunch, ~87 ps, ~8 mA

1.59 µs 
gap

8x7 multi-bunch , 0.50 µs, ~92 mA

C = 1104 m
τ = 3.682 µs
ν = 272 kHz
RF 352 MHz
1296 buckets

1.59 µs 
gap
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Kr ion time-of-flight spectroscopy
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Mechanical chopper transmits singlet x-ray pulses

X-ray fill pattern
τ  = 3.68 µs

Chopper selects singlet x-ray pulses @ 2.66 kHz
Laser @ 887 Hz :  1 laser-on vs 2 laser-off

0.51 mm slot 
50.8 mm diameter
2.45 µs open time

A. McPherson, J. Wang, P. L. Lee, D. M. Mills, J. Synch. Rad. 7, 1 (2000)

≈80,000 rpm air-bearing rotor
drive frequency phase locked to ring RF
transmits 1 singlet x-ray pulse out of 102

transmitted flux ≈ (8 × 10-4) × total flux
KB-focused flux ≈ 4 × 105 x-rays/pulse
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X-ray probe of laser-produced Kr+

12 ns
delay

0.2 fs

2p → 1s

3p → 1s

Kr K-shell
fluorescence

Laser: 800 nm, 887 Hz, 0.3 mJ, 60 fs, 30 µm focus, 6 × 1014 W/cm2



16

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

1s → 4p resonance in laser-produced Kr+
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Coulomb explosion of Kr+ ion assembly
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Kr+ ion energy distribution

focal volume ≈30 µm dia × 3 mm long
intensity ≈6 × 1014 W/cm2

atom density ≈1013/cm3

→107 ions/pulse

10 eV Kr+ ion velocity ≈ 40 µm/ns

→ study dynamics of ion assembly 
by varying x-ray probe delay

similar to Coulomb explosion of 
laser-ionized clusters

tunable x-ray probe
≈10 µm spatial resolution
≈100 ps temporal resolution
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Laser upgrades in progress at beamline 7ID

! Dedicated laser hutch

! Ti:sapphire regenerative amplifier

! Diode-pumped solid-state pump laser

! Compressed pulses 2.5 mJ, 40 fs � 10 ps

! Stretched pulses 4.0 mJ, 130 ps

! Repetition rate 1 � 5 kHz

→ Higher peak intensity, higher rep rate, and complete 
overlap of x-ray pulses (87 ps) for dressed-atom experiments
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Future directions: atoms → small molecules

Aligning molecules with laser pulses
H. Stapelfeldt and T. Seideman
Rev. Mod. Phys. 75, 543 (2003)

Alignment, molecular 
geometry, coherent control

Marcos Dantus
Tamar Seideman

Steve Pratt
Stefan Vajda
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Femtosecond-laser pulse energy vs. repetition rate
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Considerations for improved pump-probe capabilities

Repetition rate
Storage-ring bunch patterns
Mechanical or x-ray-optical choppers
High-power laser oscillators

X-rays/pulse
high stored current in singlets
pink-beam experiments

X-ray focusing with high throughput
KB mirrors
Li lens
zone plates
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APS x-ray pulse width

Shorter x-ray pulse enables 
dressed-atom experiments at 

higher laser intensity
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Develop APS capability for pump-probe experiments using soft x rays

� Lower-Z atoms at lower x-ray energies

� Longer lifetimes → better resolved resonance 
and threshold structure

� Fewer electrons → simpler decay spectra

� Larger cross sections

� Can do high-resolution electron spectroscopy, 
but x-ray spectroscopy more challenging


